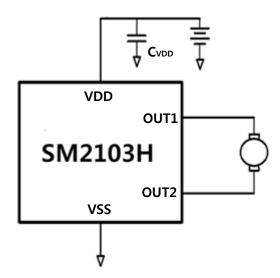


SM2103H Single Phase full-wave BLDC Motor Driver IC

1. Features

- Built in Hall sensor
- Automatic PWM mode
- Thermal Shut Down(TSD)
- Under Voltage Lock Out(UVLO)
- Package : WLCSP


3. Description

The SM2103H is a single-phase full-wave motor driver IC built in hall sensor with thermal shut down protection circuit, lock detector and frequency generator.

2. Application

· Vibration motor for mobile equipment

Simplified Schematic

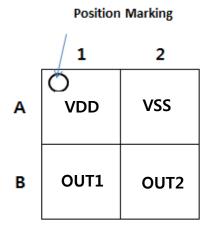


Table of Contents

1	Features	1	5	Specifications	4
2	Application	1	6	Detailed Description	6
3	Description	1	7	PKG Dimension	9
4	Pin Configuration and Functions	3			

4. Pin Configuration and Functions

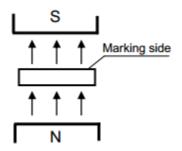
Top View

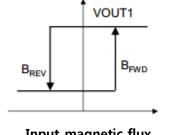
Pin No.	Symbol	Туре	Function
1A	VDD	Source	Voltage source terminal for IC. Needs to use bypass capacitor to GND.
2A	VSS	GND	Ground
1B	OUT1	Output	Motor drive output terminal 1. Needs to connect motor coil.
I ZB I CHIZ I CHIMHT I		Output	Motor drive output terminal 2. Needs to connect motor coil.

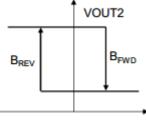
5. Specifications

5.1 Absolute Maximum Ratings (Ta=25°C)

Item	Symbol	Rating	Unit
Supply voltage	VDD	6	V
Power dissipation	Pd	510	mW
Output voltage	V _{OUT1} 、V _{OUT2}	6.0	V
Output current	I _{OUT1} 、I _{OUT2}	300	mA
ESD	НВМ	2	KV
E9D	MM	200	V
Junction Temperature	Tjmax	150	$^{\circ}$
Storage temperature range	T _{stg}	− 55 ~ + 150	$^{\circ}$


5.2 Recommended Operating Conditions


Item	Symbol	Min.	Тур.	Max.	Unit
Voltage Source	VDD	2.7	3.3	3.6	V
External parts	Cvdd		1		uF
Operating temperature	T _{opr}	-25		+85	℃



5.3 Electrical Characteristics (VDD = 3V, Ta=25°C)

Item	Symbol	Description	MIN	TYP	MAX	Unit
Current consumption	I _{DD}	Output=open		2.2	3.2	mA
Output Voltage (upper+lower)	V _{SAT}	I _{OUT} =100mA	-	-	0.45	V
Start up Full ON time	T _{FULL}	Full ON time before PWM driver changing from power supply on. (VDD=3V)	108	180	252	ms
PWM frequency	F _{PWM}	-	60	100	150	KHz
PWM Duty (output load)	D _{PWM}	with Load (L=250uH, R=25Ω)	69	75	91	%
Operating magnetic flux density (forward)	B _{FWD}		-	3.5	6.5	mT
Operating magnetic flux density (reverse)	B _{REV}		-6.5	-3.5	-	mT

Input magnetic flux density B

Input magnetic flux density B

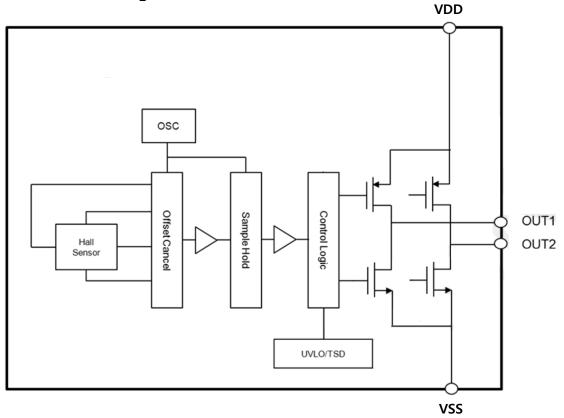
Fig 1. Input magnetic direction

Fig 2. Operating magnetic flux density

= Sense and Actuate the world

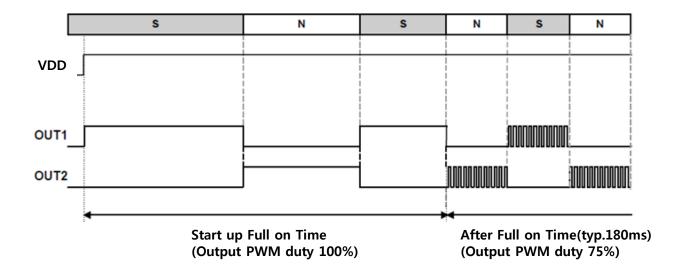
www.snaic.co.kr =

Rev 1.00 5



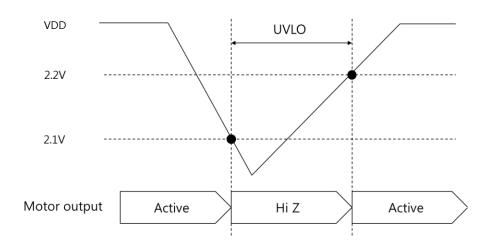
6. Detailed Description

6.1 Overview


The SM2103H is a single-phase full-wave motor driver IC built in hall sensor with thermal shut down protection circuit, lock detector and frequency generator..

6.2 Function Block Diagram

6.3 Waveform



6.4 Protection

6.4.1 UVLO

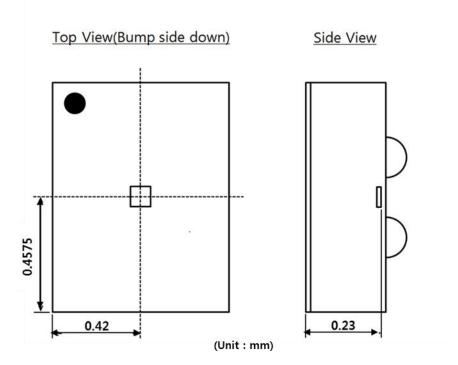
UVLO is active when VDD is under 2.1V, motor output is Hi-Z.

And protection is release when VDD is or more 2.2V, motor output is active again.

Sense and Actuate the world

www.snaic.co.kr

Rev 1.00 7

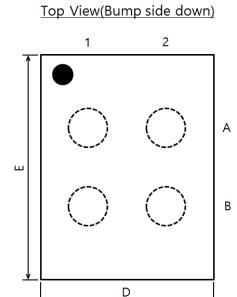


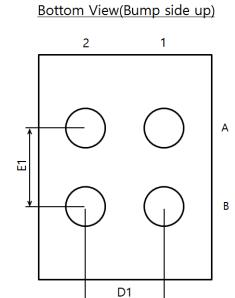
6.4.2 TSD

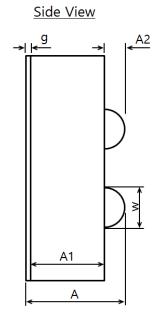
SM2103H has a built-in thermal shut down function that prevents heat damage to the IC. Normal operation should always be within the IC's power dissipation rating. If however the rating is exceeded for a continued period, the junction temperature will rise which will activate the TSD circuit that will turn OFF all output pins. When the junction temperature falls below the TSD threshold, the circuits are automatically restored to normal operation.

Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from heat damage.

6.5 Hall Sensor Location




Sense and Actuate the world


www.snaic.co.kr

7. PKG Dimension

DIMENSION

Unit: mm

Symbol	MIN	NOM	MAX	Note
Α	0.297	0.330	0.363	±0.033
A1	0.190	0.205	0.220	±0.015
A2	0.085	0.100	0.115	±0.015
D	0.810	0.840	0.870	±0.030
E	0.885	0.915	0.945	±0.030
D1				
E1				
g	0.022	0.025	0.228	±0.003
W	0.018		0.220	±0.020

To Customers:

If any product described in this document corresponds to goods or technologies which are restricted to export under the Korea "Foreign Exchange and Foreign Trade Control Law" or other applicable laws of a government having jurisdiction, then, appropriate permission for exporting such products or technologies are required to be taken.

In relation to use of the information contained in this document, no license is granted to you with regard to any intellectual property rights of SNA Co. Ltd. (hereinafter referred to as "SNA") or any third party. SNA will not be liable in any way for any claim related to infringement of intellectual property rights or other rights of third parties arising from the use of the information contained in this document.

The information concerning the circuits and other related information contained in this document is provided for referential purpose only to explain the operation or application of the products, and it will be your sole responsibility to use such information for designing of your own devices. SNA will not be liable in any way for any loss or damages incurred to you or any other party arising from the use of such information.

In general, failures in semiconductor products occur at certain percentage. Therefore, upon designing your own devices, please give due consideration to the redundancy, safety of your devices and methods to prevent occurrence of malfunction in order to avoid personal injuries, accidents or other social damages which might happen as the result of a failure of semiconductor products used in your devices.

For application of SNA products to medical equipment or other purposes where high reliability of the device is required, please contact SNA sales representative. The contents of these documents may be subject to change without any notice, due to improvement of reliability or design of the products.

It is inhibited to reproduce or copy the whole or part of this document without the permission of SNA.

10

SNA Co. Ltd.

